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Fourier Transforms and the 

Fast Fourier Transform (FFT) Algorithm 

 

Definition of the Fourier Transform 

 
The Fourier transform (FT) of the function f (x) is the function F(ω), where: 

 

F(ω) 
∞

 

−∞ 

f (x)e−iωx dx 

and the inverse Fourier transform is 
 

f (x)  
1 

2π 

 
∞ 

F(ω)eiωx dω 
−∞ 

Recall that i = 
√

−1 and eiθ = cos θ + i sin θ. 

Think of it as a transformation into a different set of basis functions. The Fourier trans- 

form uses complex exponentials (sinusoids) of various frequencies as its basis functions. 

(Other transforms, such as Z, Laplace, Cosine, Wavelet, and Hartley, use different basis 

functions). 

A Fourier transform pair is often written f (x) F(ω), or F ( f (x)) F(ω) where F 
is the Fourier transform operator. 

If f (x) is thought of as a signal (i.e. input data) then we call F(ω) the signal’s spectrum. 

If f is thought of as the impulse response of a filter (which operates on input data to produce 

output data) then we call F the filter’s frequency response. (Occasionally the line between 

what’s signal and what’s filter becomes blurry). 
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Example of a Fourier Transform 

 
Suppose we want to create a filter that eliminates high frequencies but retains low frequen- 

cies (this is very useful in antialiasing). In signal processing terminology, this is called an 

ideal low pass filter. So we’ll specify a box-shaped frequency response with cutoff fre- 

quency ωc: 

 

 
What is its impulse response? 

F 
1 |ω|≤ ωc 

0 |ω| > ωc 

 

We know that the impulse response is the inverse Fourier transform of the frequency 

response, so taking off our signal processing hat and putting on our mathematics hat, all we 
need to do is evaluate: 

 

 
for this particular F(ω): 

f (x)  
1 

2π 

∞ 

F(ω)eiωx dω 
−∞ 

 

1 
f (x) = 

2π
 

ωc 

 

−ωc 

eiωx dω 

1 
= 

2π 
1 

= 
πx 

eiωx ωc 

ix ω=−ωc 

eiωc x − e−iωcx 

2i 

sin ωcx 
since sin θ 

πx 

eiθ − e−iθ 
 

 

2i 
ωc ωc 

sinc(  x) 
π π 

where sinc(x) = sin(πx)/(πx). For antialiasing with unit-spaced samples, you want the 

cutoff frequency to equal the Nyquist frequency, so ωc = π. 

 
Fourier Transform Properties 

 
Rather than write “the Fourier transform of an X function is a Y function”, we write the 
shorthand: X ↔ Y. If z is a complex number and z = x + iy where x and y are its real and 

imaginary parts, then the complex conjugate of z is z∗ = x − iy. A function f (u) is even if 

f (u) = f (−u), it is odd if f (u) =−  f (−u), it is conjugate symmetric if f (u) = f ∗ (−u), 

and it is conjugate antisymmetric if f (u) =−  f ∗ (−u). 

∫ 

= = 

= 
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¸ 
− ↔ 

The (Dirac) delta function δ(x) is defined such that δ(x) = 0 for all x /= 0, 
¸ +∞ 

δ(t) dt = 1, 

−∞ 

discrete ↔ periodic 

periodic ↔ discrete 

discrete, periodic ↔ discrete, periodic 

real ↔ conjugate symmetric 

imaginary ↔ conjugate antisymmetric 

box ↔ sinc 

sinc ↔ box 

Gaussian ↔ Gaussian 

impulse ↔ constant 

impulse train ↔ impulse train 

(can you prove the above?) 

When a signal is scaled up spatially, its spectrum is scaled down in frequency, and vice 

versa: f (ax) ↔ F(ω/a) for any real, nonzero a. 

 
Convolution Theorem 

 
The Fourier transform of a convolution of two signals is the product of their Fourier trans- 

forms:  f Ⓢ∗ g ↔ FG. The convolution of two continuous signals  f  and g is 

( f Ⓢ∗ g)(x) = 

∫  +∞  

f (t)g(x − t) dt 

So +∞ f (t)g(x t) dt F(ω)G(ω). 
−∞ 

The Fourier transform of a product of two signals is the convolution of their Fourier 

transforms:  fg ↔ F Ⓢ∗ G/2π. 

 
Delta Functions 

 

 

and for any f (x): 
−∞ 

( f Ⓢ∗ δ)(x) = 

∫  +∞  

f (t)δ(x − t) dt =  f (x) 

 
The latter is called the sifting property of delta functions. Because convolution with a delta 

is linear shift-invariant filtering, translating the delta by a will translate the output by a: 

. 
f (x) Ⓢ∗ δ(x − a)

Σ
(x) =  f (x − a) 

−∞ 
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W 

N−1 

n 
N N 

k=0 

Discrete Fourier Transform (DFT) 

 
When a signal is discrete and periodic, we don’t need the continuous Fourier transform. 

Instead we use the discrete Fourier transform, or DFT. Suppose our signal is an  for n =  
0 ... N  1, and an an+ jN for all n and j. The discrete Fourier transform of a, also known 

as the spectrum of a, is: 

 

 

This is more commonly written: 

N−1 

Ak N n 

n=0 

 
N−1 

Ak = 
Σ 

Wknan (1) 

 
where 

n=0 

 
2π 

 
 

WN = e−i N 

and Wk for k 0 ... N 1 are called the Nth roots of unity. They’re called this because, in 

complex arithmetic, (Wk )N 1 for all k. They’re vertices of a regular polygon inscribed 

in the unit circle of the complex plane, with one vertex at (1, 0). Below are roots of unity 

for N = 2, N = 4, and N = 8, graphed in the complex plane. 

Im 

 

 

 
 2 

1  Re 

 

 

N=2 

 

Powers of roots of unity are periodic with period N, since the Nth roots of unity are 

points on the complex unit circle every 2π/ N radians apart, and multiplying by WN is equiv- 

alent to rotation clockwise by this angle.  Multiplication by WN  is rotation by 2π radians, that is, no rotation at all. In general, Wk
 N 

Wk+ jN  

N  = N for all integer j. Thus, when raising WN 
to a power, the exponent can be taken modulo N. 

The sequence Ak is the discrete Fourier transform of the sequence an. Each is a sequence 

of N complex numbers. 

The sequence an is the inverse discrete Fourier transform of the sequence Ak. The for- 

mula for the inverse DFT is 

a  = 
1 Σ 

W−kn A 

W 3 
4 

i 

 W 0 
4 

W 2 
4 



-i 

W 1 
4 N=4 

W 6 
8 

W 5 i 
W 7 

8 

8 

 

 W 0 
8 

W 4 
8 



W 3 
-i 

W 1 
8 

8 W 2 
8 N=8 

W 

k 

0 

2 
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Σ 

Σ 

The formula is identical except that a and A have exchanged roles, as have k and n. Also, 

the exponent of W is negated, and there is a 1/ N normalization in front. 

 
 

Two-point DFT (N=2) 

 
W2 = e−iπ = −1, and 

1 

Ak = (−1)knan = (−1)k·0a0 + (−1)k·1a1 = a0 + (−1)ka1 

n=0 

so 

A0 = a0 + a1 

A1 = a0 − a1 

 
Four-point DFT (N=4) 

 
W4 = e−iπ/2 = −i, and 

3 

Ak = (−i)knan = a0 + (−i)ka1 + (−i)2ka2 + (−i)3ka3 = a0 + (−i)ka1 + (−1)ka2 + ika3 

n=0 

so 
A0 = a0 + a1 + a2 + a3 

A1 = a0 − ia1 − a2 + ia3 

A2 = a0 − a1 + a2 − a3 

A3 = a0 + ia1 − a2 − ia3 

This can also be written as a matrix multiply: 

 A0   
1 1 1 1   a0  

 

  A1  =  1 −i −1 i     

 
   1 −1 1 −1   a2 

 

 
More on this later. 

1 i −1 −i  
a  

 
 
A3 

  
3

 

To compute A quickly, we can pre-compute common subexpressions: 

A0 = (a0 + a2) + (a1 + a3) 

A1 = (a0 − a2) − i(a1 − a3) 

A2 = (a0 + a2) − (a1 + a3) 

A3 = (a0 − a2) + i(a1 − a3) 

A2 

a1 
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= = 

Proof: ; 

This saves a lot of adds. (Note that each add and multiply here is a complex (not real) op- eration.) 

If we use the following diagram for a complex multiply and add: 

 

p pq 

 

q 

 

then we can diagram the 4-point DFT like so: 

 

a0 a0a2 A0 

 

a2 
 

a0a2 A1 

a1 a1a3 A2 

 

a3 
 

a1a3 
i 

A3 

 

If we carry on to N   8, N   16, and other power-of-two discrete Fourier transforms,  we get... 

 
 

Discuss properties of DFT like: 
 

 
1) Linearity, 

 
2) Periodicity, 

 
3) DFT symmetry, 

 
4) DFT phase-shifting etc. 

 

34.1 Linearity: 

 
Let  and  be two sets of discrete samples with corresponding DFT's 

given by and  .  Then DFT of sample  set  is given 

by 
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34.2 Periodicity : 

 

periodicity. For example 
 

 

 

 

 

Proof: 

 

 
 

(1) 
 

 

Both and are integers. Hence ; Therefore from (1) we set 

We have evaluated DFT at . There after, it shows 

Where is an integer. 
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= 

 
Since 

 
 

34.3 DFT symmetry : 

 
If  the  samples   are  real,  then  extracting  in  frequency domain   seems 

counter intuitive; because, from N bits of information in one domain (time), we are deriving 2N bits 
of information in frequency domain. This suggests that there is some redundancy in computation of 

. As per DFT symmetry property, following relationship holds. 
 

 

, where symbol  indicates complex conjugate. 

Proof: 

 

 

 

34.3 DFT symmetry : (contd..) 
 
 

 

If  the  samples  are  real;  then  they 

contain  atmost   bits  of  information. On 

the otherhand, is a complex 

number and  hence  contains  2  bits  of  

information. 

Thus,  from  sequence ,  if 

we  derive ,  it 

implies that from N-bit of information, we 
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are deriving   bits of information. This 

is counter intuitive. We should expect 
some relationship in the sequence 
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Thus, we conclude that 

[Symmetry] 

 

 

 

 

 

 

 

 

 

 

 

 

34.4 DFT phase shifting : 

and [Anti- 

symmetry]. DFT magnitude and phase 
plots appear as shown in fig 34.1 and 34.2. 

 
  

 

 

 
Proof: By periodicity of samples, we have 

DFT shifting property states that, for a 
periodic  sequence  with  periodicity       

i.e. 

,       an integer, an offset 

in sequence manifests itself as a phase 
shift in the frequency domain. In other 
words, if we decide to sample x(n) starting 
at n equal to some integer K, as opposed 
to n = 0, the DFT of those time shifted 
sequence, 

is 
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34.4 DFT phase shifting : 
 

  

 

 

 
Proof: By periodicity of samples, we have 

DFT shifting property states that, for a 
periodic  sequence  with  periodicity       

i.e. 

,       an integer, an offset 

in sequence manifests itself as a phase 
shift in the frequency domain. In other 
words, if we decide to sample x(n) starting 
at n equal to some integer K, as opposed 
to n = 0, the DFT of those time shifted 
samples. 
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= 

(from (2)) 

34.4 DFT phase shifting: (contd..) 
 

(2) 
 
 

Now to compute , let us map the samples  to 

. Apply DFT to sequence  . 

 
 

 

 

 

 

The Fast Fourier Transform (FFT) Algorithm 

 
The FFT is a fast algorithm for computing the DFT. If we take the 2-point DFT and 4-point 

DFT and generalize them to 8-point, 16-point, ..., 2r -point, we get the FFT algorithm. 

To compute the DFT of an N-point sequence using equation (1) would take O( N2 ) mul- 

tiplies and adds. The FFT algorithm computes the DFT using O( N log N) multiplies and 

adds. 

There are many variants of the FFT algorithm. We’ll discuss one of them, the “decimation- 

in-time” FFT algorithm for sequences whose length is a power of two ( N 2r for some 

integer r). 

Below is a diagram of an 8-point FFT, where W = W8 = e−iπ/4 = (1 − i)/
√

2: 
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W 0 W 0 



W 2 
W 1 

 W 4 W 2 


W 6 W 3 


W 0 

W 4 


W 2 W 5 

 W 4 W 6 



+ − 

a0 

a4 

a2 

a6 

a1 

a5 

a3 

a
7 



A0 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

W 6 W 7 

 

Butterflies and Bit-Reversal. The FFT algorithm decomposes the DFT into log2 N stages, 

each of which consists of N/2 butterfly computations. Each butterfly takes two complex 

numbers p and q and computes from them two other numbers,  p    αq and p    αq, where 

α is a complex number. Below is a diagram of a butterfly operation. 

 

p pq 

 

q pq 




In the diagram of the 8-point FFT above, note that the inputs aren’t in normal order: 

a0, a1, a2, a3, a4, a5, a6, a7, they’re in the bizarre order: a0, a4, a2, a6, a1, a5, a3, a7. Why 

this sequence? 

Below is a table of j and the index of the jth input sample, n j: 
 
 

j 0 1 2 3 4 5 6 7 

n j 0 4 2 6 1 5 3 7 

j base 2 000 001 010 011 100 101 110 111 

n j base 2 000 100 010 110 001 101 011 111 

 

The pattern is obvious if j and n j are written in binary (last two rows of the table). Observe 

that each n j is the bit-reversal of j. The sequence is also related to breadth-first traversal of 

a binary tree. 

It turns out that this FFT algorithm is simplest if the input array is rearranged to be in 

bit-reversed order. The re-ordering can be done in one pass through the array a: 
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= 

A3 

 

  

 

 

 

    

 
  

 
 

 

   

 

 

 

  

 

 

 

   

for j = 0 to N-1 

nj = bit_reverse(j) 

if (j<nj) swap a[j] and a[nj] 

 
 

General FFT and IFFT Algorithm for N  2r .   The previously diagrammed algorithm 

for the 8-point FFT is easily generalized to any power of two. The input array is bit-reversed, 

and the butterfly coefficients can be seen to have exponents in arithmetic sequence modulo 

N. For example, for N  8, the butterfly coefficients on the last stage in the diagram are 

W0, W1, W2, W3, W4, W5, W6, W7. That is, powers of W in sequence.  The coefficients  

in the previous stage have exponents 0,2,4,6,0,2,4,6, which is equivalent to the sequence 

0,2,4,6,8,10,12,14 modulo 8. And the exponents in the first stage are 1,-1,1,-1,1,-1,1,-1, 

which is equivalent to W raised to the powers 0,4,0,4,0,4,0,4, and this is equivalent to the 

exponent sequence 0,4,8,12,16,20,24,28 when taken modulo 8. The width of the butterflies 

(the height of the ”X’s” in the diagram) can be seen to be 1, 2, 4, ... in successive stages, and 

the butterflies are seen to be isolated in the first stage (groups of 1), then clustered into over- 

lapping groups of 2 in the second stage, groups of 4 in the 3rd stage, etc. The generalization 

to other powers of two should be evident from the diagrams for N = 4 and N = 8. 

The inverse FFT (IFFT) is identical to the FFT, except one exchanges the roles of a and 

A, the signs of all the exponents of W are negated, and there’s a division by N at the end. 

Note that the fast way to compute mod( j, N) in the C programming language, for N a power 

of two, is with bit-wise AND: “j&(N-1)”. This is faster than “j%N”, and it works for 

positive or negative j, while the latter does not. 

 

 

FFT Explained Using Matrix Factorization 

 
The√8-point DFT can be written as a matrix product, where we let W = W8 = e−iπ/4 = (1 − 

 

i)/ 2: 
 A0  

 

 

 A2  

  

 
W0  W0  W0  W0  W0  W0   W0  W0 a0 

W0  W1  W2  W3  W4  W5   W6  W7 a1 

W0  W2  W4  W6  W0  W2   W4  W6 a2 

W0  W3  W6  W1  W4  W7   W2  W5 a3 

 

A5 

A6 

 A7  

W0  W5  W2  W7  W4  W1   W6  W3 a5 

W0  W6  W4  W2  W0  W6   W4  W2 a6 

 W0   W7   W6   W5   W4   W3   W2   W1   a7  

A1 

A4 
= 

W0  W4  W0  W4  W0  W4 W0 W4 a4 
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A3 

   

 

    

   
 

   

 

 

   

 

   

= × 

Σ  
knA  = 

 W   a  ,k 

 n 

· 
+ − 

   

Rearranging so that the input array a is bit-reversed and factoring the 8 × 8 matrix: 

 A0  
 

 

 A2  

  

W0  W0  W0  W0  W0  W0   W0  W0 a0 

W0  W4  W2  W6  W1  W5   W3  W7 a4 

W0  W0  W4  W4  W2  W2   W6  W6 a2 

W0  W4  W6  W2  W3  W7   W1  W5 a6 

 

A5 

A6 

 A7  

W0  W4  W2  W6  W5  W1   W7  W3 a5 

W0  W0  W4  W4  W6  W6   W2  W2 a3 

 W0   W4   W6   W2   W7   W3   W5   W1   a7  

 

 1  ·  ·  ·  W0     · · · 
 

 
 ·  ·  1 ·  · ·   W2  · 

  1  ·  W0     ·   ·  ·   · · 
 

 
  1  · W4    ·  · ·  · · 

  1  W0   ·    ·   ·   ·    ·   · 
 

 
  ·  ·  1 W0  ·   ·   · · 

  a0  
 

 

  a2  
 

 
 ·  ·  · 1   · · ·  W3 

  · 1   ·  W6  ·  ·  · ·   · · 1 W4 ·  ·  · ·    
 

 = 
 1 ·  · · W4   · · ·    · ·  · · 1 · W0 ·   ·  ·  ·  · 1 W0 · ·    

 

 
 ·  1  ·  ·  · W5   · ·    · ·  · ·  · 1 ·  W2 

  ·  ·  ·  · 1 W4 · ·    

·  ·  1 ·   · ·  W6    · ·  ·   · ·   1 · W4 ······································· 1 W0 
  a3    

 ·  ·  ·  1    · · ·   W7   ·  ·   · ·   ·  1    ·   W6   ·    ·   ·    ·   ·   ·   1  W4   a7  

where “·” means 0. 

These are sparse matrices (lots of zeros), so multiplying by the dense (no zeros) matrix 

on top is more expensive than multiplying by the three sparse matrices on the bottom. 

For N 2r , the factorization would involve r matrices of size N N, each with 2 non- 

zero entries in each row and column. 

 

 

How Much Faster is the FFT? 

 
To compute the DFT of an N-point sequence using the definition, 

N−1 

N 

n=0 

would require N2 complex multiplies and adds, which works out to 4N2 real multiplies and 

4N2 real adds (you can easily check this, using the definition of complex multiplication). 

The basic computational step of the FFT algorithm is a butterfly. Each butterfly com- 

putes two complex numbers of the form p αq and p αq, so it requires one complex 

multiply (α q) and two complex adds. This works out to 4 real multiplies and 6 real adds 

per butterfly. 

a5 

a1 

a6 

a4 1 W4 · · · · · · · 21    ·   W    ·  ·       

· · 

· 11  ·  ·   ·   

W  · · 

A1 

A4 
= 

W0  W0  W0  W0  W4  W4 W4 W4 a1 
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= 
· · 

¸ 

= Ⓢ∗ 

Σ 

Σ∞

t

 
f
−

[t
∞

]g[x − t]. We might think of  f  as the signal and g as the filter. 

N 

2 

4 

8 

1,024 

65,536 

r = log2 N 
1 

2 

3 

10 

16 

BRUTE FORCE 

4N2
 

16 

64 

256 

4,194,304 

1.7 · 1010
 

FFT 

2N log2 N 
4 

16 

48 

20,480 

2.1 · 106
 

speedup 

4 

4 

5 

205 

˜104
 

=−∞ 

There are  N/2 butterflies per stage,  and log2  N  stages,  so that means about 4 N/2 

log2 N 2N log2 N real multiplies and 3N log2 N real adds for an N-point FFT. (There are 

ways to optimize further, but this is the basic FFT algorithm.) 

Cost comparison: 
 
 

 

The FFT algorithm is a LOT faster for big N. 

There are also FFT algorithms for N not a power of two. The algorithms are generally 

fastest when N has many factors, however. 

An excellent book on the FFT is: E. Oran Brigham, The Fast Fourier Transform, Prentice- 

Hall, Englewood Cliffs, NJ, 1974. 

 

 

Why Would We Want to Compute Fourier Transforms, Any- 

way? 

 
The FFT algorithm is used for fast convolution (linear, shift-invariant filtering). If h f g 
then convolution of continuous signals involves an integral: 

h(x) = 
+∞ 

f (t)g(x − t) dt, but convolution of discrete signals involves a sum: h[x] = 
 

When working with finite sequences, the definition of convolution simplifies if we as- 

sume that f and g have the same length N and we regard the signals as being periodic, so 

that f and g “wrap around”. Then we get circular convolution: 

N−1 

h[x] = f [t]g[x − t mod N] for x = 0 ... N − 1 

t=0 

 

The convolution theorem says that the Fourier transform of the convolution of two sig- 

nals is the product of their Fourier transforms:  f Ⓢ∗ g ↔ FG.  The corresponding theorem 
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M−1 N−1 

M N 

m=0 n=0 

for discrete signals is that the DFT of the circular convolution of two signals is the product 

of their DFT’s. 

Computing the convolution with a straightforward algorithm would require N2 (real) 

multiplies and adds – too expensive! 

We can do the same computation faster using discrete Fourier transforms. If we compute 

the DFT of sequence f and the DFT of sequence g, multiply them point-by-point, and then 

compute the inverse DFT, we’ll get the same answer. This is called Fourier Convolution: 
 

spatial 

domain 

frequency 

domain 
 

  

FFT  O(NlogN) 

 

f g F G 
 

convolve  
O(N2) 

 

f g 

 multiply 
O(N) 

 

FG 

 

IFFT 
O(NlogN) 

 

If we use the FFT algorithm, then the two DFT’s and the one inverse DFT have a to- 

tal cost of 6N log2 N real multiplies, and the multiplication of transforms in the frequency 

domain has a negligible cost of 4N real multiplies. The straightforward algorithm, on the 

other hand, required N2 real multiplies. 

Fourier convolution wins big for large N. 

Often, circular convolution isn’t what you want, but this algorithm can be modified to 

do standard “linear” convolution by padding the sequences with zeros appropriately. 

 

 

Fourier Transforms of Images 

 
The two-dimensional discrete Fourier transform is a simple generalization of the standard 

1-D DFT: 

Ak,l = 
Σ Σ 

Wkm Wlnam,n 
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× 

= 

= = 

.Σ Σ.Σ 

Σ n 

If polynomials p and q have the form: p(x) = 
ΣN−1 

fnxn and q(x) = 
ΣN−1 

gnxn then their 

This is the general formula, good for rectangular images whose dimensions are not neces- 

sarily powers of two. If you evaluate DFT’s of images with this formula, the cost is O( N4 ) 
– this is way too slow if N is large! But if you exploit the common subexpressions from row 

to row, or from column to column, you get a speedup to O( N3 ) (even without using FFT): 

To compute the Fourier transform of an image, you 

 
• Compute 1-D DFT of each row, in place. 

• Compute 1-D DFT of each column, in place. 

Most often, you see people assuming M   N   2r , but as mentioned previously, there 

are FFT algorithms for other cases. 

For an N N picture, N a power of 2, the cost of a 2-D FFT is proportional to N2 log N. 

( Can you derive this? ) Quite a speedup relative to O( N4 )! 

Practical issues: For display purposes, you probably want to cyclically translate the pic- 

ture so that pixel (0,0), which now contains frequency (ωx, ωy) (0, 0), moves to the center 

of the image. And you probably want to display pixel values proportional to log(magnitude) 

of each complex number (this looks more interesting than just magnitude). For color im- 

ages, do the above to each of the three channels (R, G, and B) independently. 

FFT’s are also used for synthesis of fractal textures and to create images with a given 

spectrum. 

 

 

Fourier Transforms and Arithmetic 

 
The FFT is also used for fast extended precision arithmetic (e.g. computing π to a zillion 

digits), and multiplication of high-degree polynomials, since they also involve convolution. 

 
product is the polynomial 

 
r(x) = p(x)q(x) = 

 

 
N−1 

 
n=0 

 

 

 
fnxn 

 

 
N−1 

 
n=0 

n=0 

 

gnxn
Σ

 

n=0 

= ( f0 + f1 x + f2x2 + ···)(g0 + g1 x + g2 x2 + · · ·) 

= f0g0 + ( f0g1 + f1g0)x + ( f0g2 + f1g1 + f2g0)x 

2N−2 

= hnx 

n=0 

+ · · ·  2 
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j=0 

= 

= 
Σ 

= Ⓢ∗ where hn N−1 f jgn− j, and h f g. Thus, computing the product of two polynomials 

involves the convolution of their coefficient sequences. 

Extended precision numbers (numbers with hundreds or thousands of significant figures) 

are typically stored with a fixed number of bits or digits per computer word. This is equiv- 

alent to a polynomial where x has a fixed value. For storage of 32 bits per word or 9 digits 

per word, one would use x 232  or 109,  respectively.  Multiplication of extended preci- 

sion numbers thus involves the multiplication of high-degree polynomials, or convolution 

of long sequences. 

When N is small (< 100, say), then straightforward convolution is reasonable, but for 

large N, it makes sense to compute convolutions using Fourier convolution. 


